

# Exploring Habitability, Hydrology, and Climate Change on Mars at Columbus Crater Abstract #1041

Kennda Lynch<sup>1</sup> and James Wray<sup>2</sup>

<sup>1</sup> Depart of Civil & Environmental Engineering, Colorado School of Mines <sup>2</sup>School of Earth and Atmospheric Sciences, Georgia Tech

### Columbus Crater: Overview



- Ground-water filled paleolake basin
- ~110 km in diameter
- Estimated 1.5 km depth of sedimentary and/or volcanic infill
- Excellent crater retention for age dating
- Diversity of Noachian & Hesperian aged deposits and outcrops
- High diversity of aqueous mineral deposits



Columbus Crater

## Analog Studies









# Science ROI(s) Rubric



1st EZ Workshop for Human Missions to Mars

| Site Factors |             |              |                                                                            |   | SR012 | SROI3 | SR014 | SROIS | RR011 | EZ SUM |
|--------------|-------------|--------------|----------------------------------------------------------------------------|---|-------|-------|-------|-------|-------|--------|
|              | Astrobio    | Threshold    | Potential for past habitability                                            | • | •     | •     | •     | •     | •     | (6,0)  |
|              |             | Till Colloid | Potential for present habitability/refugia                                 |   | ?     | ?     | ?     | ?     | ?     | (0,0)  |
|              | Ä           | Qualifying   | Potential for organic matter, w/ surface exposure                          | • | 0     | •     | •     | •     | •     | (5,1)  |
|              | Science     | Threshold    | Noachian/Hesperian rocks w/ trapped atmospheric gases                      | • | •     | •     | •     | •     | •     | (6,0)  |
|              |             |              | Meteorological diversity in space and time                                 | • |       | •     |       | •     | •     | (4,0)  |
|              |             | 0 1.6        | High likelihood of surface-atmosphere exchange                             | • |       | •     |       | •     |       | (3,0)  |
| Criteria     | Atmospheric | Qualifying   | Amazonian subsurface or high-latitude ice or sediment                      | 0 | 0     | 0     | 0     | 0     | 0     | (0,6)  |
| Crit         | Atm         |              | High likelihood of active trace gas sources                                | ? | ?     | ?     | ?     | ?     | ?     | (0,0)  |
| Site (       |             | Threshold    | Range of martian geologic time; datable surfaces                           | • | •     | •     |       | •     | •     | (5,0)  |
|              |             |              | Evidence of aqueous processes                                              | • | •     | •     | •     | •     | •     | (6,0)  |
| Science      |             |              | Potential for interpreting relative ages                                   | • | •     | •     | •     | •     | •     | (6,0)  |
| Scie         | e l         |              | Igneous Rocks tied to 1+ provinces or different times                      | • | •     |       | •     |       |       | (3,0)  |
|              | ienc        |              | Near-surface ice, glacial or permafrost                                    | ? | ?     | ?     | ?     | ٠.    | ?     | (0,0)  |
|              | 1 0         |              |                                                                            |   |       |       |       |       |       | (0.2)  |
|              | Seosci      |              | Noachian or pre-Noachian bedrock units                                     |   |       | 0     |       |       | 0     | (0,2)  |
|              | Geoscience  | Qualifying   | Noachian or pre-Noachian bedrock units Outcrops with remnant magnetization |   |       | 0     |       |       | 0     | (0,2)  |
|              | Geosci      | Qualifying   |                                                                            |   | •     |       | •     | •     |       |        |
|              | Geosci      | Qualifying   | Outcrops with remnant magnetization                                        |   | •     |       | •     | •     |       | (0,2)  |

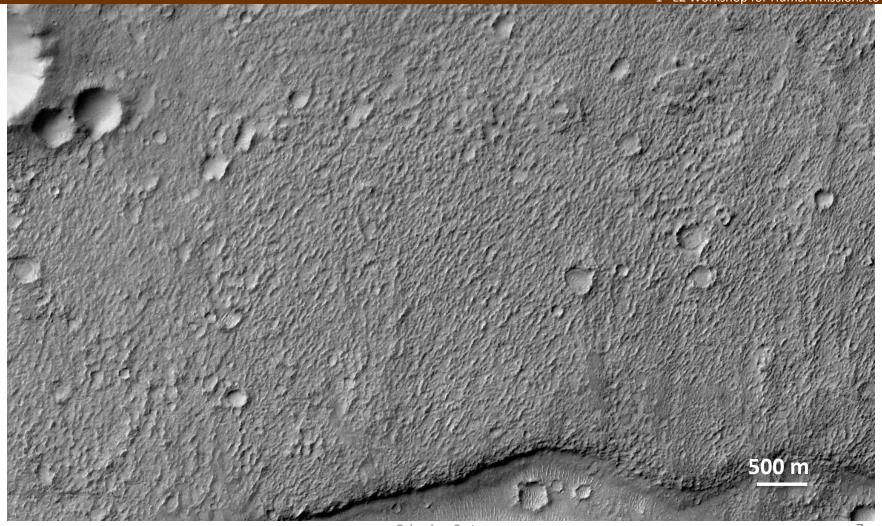
| Key |                            |  |
|-----|----------------------------|--|
| •   | Yes                        |  |
| 0   | Partial Support or Debated |  |
|     | No                         |  |
| ?   | Indeterminate              |  |

## Resource ROI(s) Rubric



1<sup>st</sup> EZ Workshop for Human Missions to Ma

|                       |                        |             |                                                       | Site Factors                                                                      | RR011 | LZ/HZ | EZ SUM |
|-----------------------|------------------------|-------------|-------------------------------------------------------|-----------------------------------------------------------------------------------|-------|-------|--------|
|                       | En                     | Engineering |                                                       | Meets First Order Criteria (Latitude, Elevation, Thermal Inertia)                 |       | •     | (2,0)  |
|                       |                        |             | AND/<br>OR                                            | Potential for ice or ice/regolith mix                                             |       |       | (0,0)  |
|                       |                        | Threshold   | A O                                                   | Potential for hydrated minerals                                                   | •     |       | (1,0)  |
|                       | e l                    |             | Quantity for substantial production                   |                                                                                   |       |       | (0,0)  |
|                       | l n                    |             | Potential to be minable by highly automated systems   |                                                                                   |       |       | (0,0)  |
| æ                     | Water Resource         |             | Located less than 3 km from processing equipment site |                                                                                   |       |       | (0,1)  |
| Criteria              | r R                    |             | Located no more than 3 meters below the surface       |                                                                                   |       |       | (0,1)  |
|                       | ate                    |             |                                                       | Accessible by automated systems                                                   | 0     |       | (0,1)  |
| <u> </u>              | >                      |             | Pot                                                   | ential for multiple sources of ice, ice/regolith mix <b>and</b> hydrated minerals |       |       | (0,0)  |
| _                     |                        | Qualifying  |                                                       | Distance to resource location can be >5 km                                        | •     |       | (1,0)  |
| Ľ                     |                        |             |                                                       | Route to resource location must be (plausibly) traversable                        | •     |       | (1,0)  |
| <u>.</u>              | ng                     | Threshold   | ~50 s                                                 | sq km region of flat and stable terrain with sparse rock distribution             |       | 0     | (0,1)  |
| ě                     | eri                    |             |                                                       | 1-10 km length scale: <10°                                                        |       | 0     | (0,1)  |
| and Civil Engineering | Civil Engineering      |             |                                                       | Located within 5 km of landing site location                                      |       | 0     | (0,1)  |
| ũ                     | Enç                    | Qualifying  |                                                       | Located in the northern hemisphere                                                |       |       | (0,0)  |
| Ш                     | Ξ                      |             |                                                       | Evidence of abundant cobble sized or smaller rocks and bulk, loose regolith       | •     |       | (1,0)  |
| 5                     |                        |             |                                                       | Utilitarian terrain features                                                      | ?     |       | (0,0)  |
| ί                     | Food<br>Production     | Qualifying  |                                                       | Low latitude                                                                      | •     |       | (1,0)  |
| 7                     | Food                   |             |                                                       | No local terrain feature(s) that could shadow light collection facilities         |       |       | (0,0)  |
| Ĕ                     | 2 PO                   |             |                                                       | Access to water                                                                   |       |       | (0,0)  |
|                       |                        |             |                                                       | Access to dark, minimally altered basaltic sands                                  | 0     |       | (0,1)  |
| ISRU                  | rce                    |             |                                                       | Potential for metal/silicon                                                       | •     |       | (1,0)  |
| S                     | nog                    |             |                                                       | Potential to be minable by highly automated systems                               | 0     |       | (0,1)  |
|                       | Res                    | Threshold   |                                                       | Located less than 3 km from processing equipment site                             |       |       | (0,0)  |
|                       | _ u                    |             |                                                       | Located no more than 3 meters below the surface                                   | •     |       | (1,0)  |
|                       | llicc                  |             |                                                       | Accessible by automated systems                                                   | 0     |       | (0,1)  |
|                       | Metal/Silicon Resource | Qualifying  |                                                       | Potential for multiple sources of metals/silicon                                  | •     |       | (1,0)  |
|                       | eta                    |             |                                                       | Distance to resource location can be >5 km                                        | •     |       | (1,0)  |
|                       | Σ                      |             |                                                       | Route to resource location must be (plausibly) traversable                        | •     |       | (1,0)  |


| Key |                            |  |
|-----|----------------------------|--|
| •   | Yes                        |  |
| 0   | Partial Support or Debated |  |
|     | No                         |  |
| ?   | Indeterminate              |  |



## LZ & Field Station



1st EZ Workshop for Human Missions to Mars









#### Northeastern Shore

- 194.2591° E, -28.883° N
- Most exposed light toned units & highest diversity of aqueous mineral deposits



Columbus Crater

Wray et al., 2011







#### **D11 Crater**

- 194.2591° E, 29.581° S
- Stratigraphic context
- Possible RSL



Columbus Crater



1<sup>st</sup> EZ Workshop for Human Missions to Mars



#### **Bathtub Ring**



Wray et al., 2011







#### **Pedestal Crater**

• 193.603° E, 29.345° S





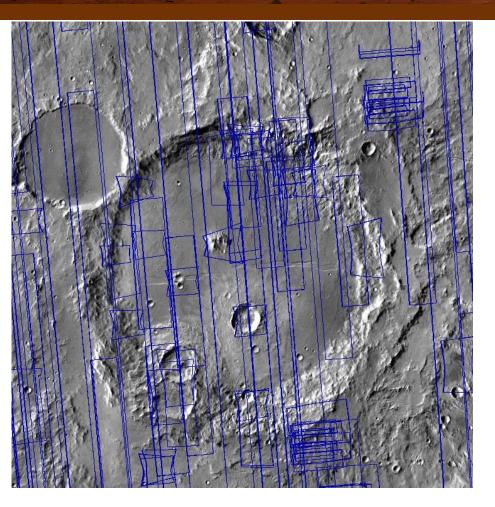




#### **Dual Craters**

193.599° E, 29.973° S




# Resource ROI 1





## Data Coverage

1st EZ Workshop for Human Missions to Mars





**CRISM Coverage** 

HiRISE Coverage



1st EZ Workshop for Human Missions to Mars

- Science Coverage
  - HRSC coverage of crater rim & basin floor
  - CRISM coverage of the Northwest crater Rim
  - General HiRISE coverage of the crater rim and basin floor
- Resource Coverage
  - General HiRISE coverage of basin floor